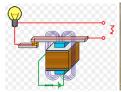
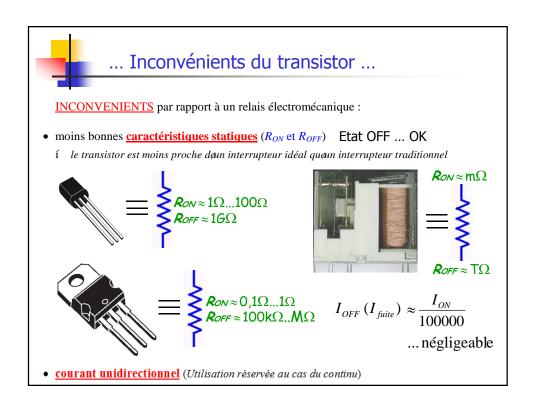
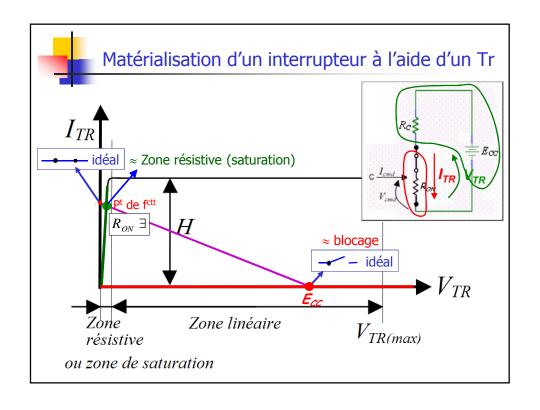
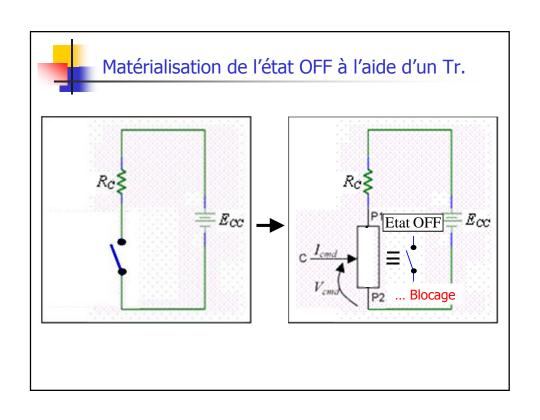

Transistors en commutation

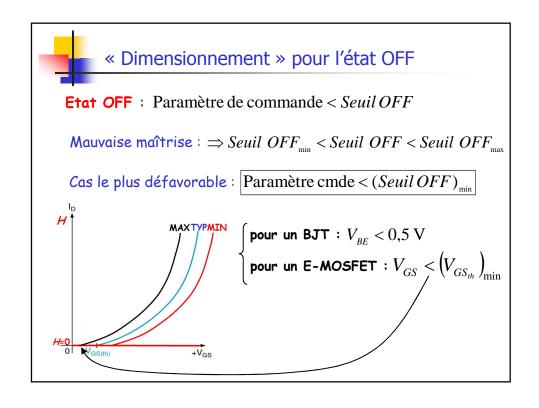

- Comparaison « Transistor Relais électro-mécanique »
- Matérialisation d'un interrupteur à l'aide d'un transistor
 ⇒ Dimensionnement (Etat OFF Etat ON)
- Critères de choix d'un transistor en commutation
- Choix du type de polarité d'un transistor en commutation
 - ⇒ Commande d'une charge connectée à la masse

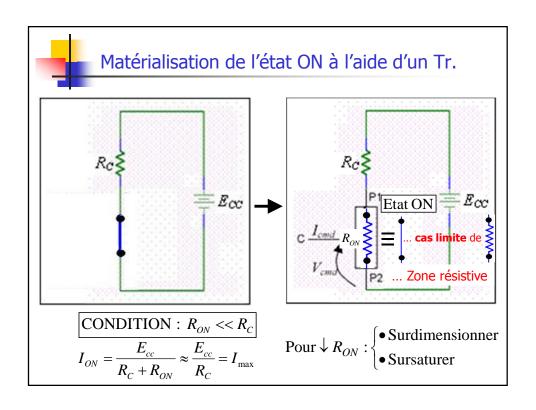
... plutôt qu'un relais électro-mécanique?

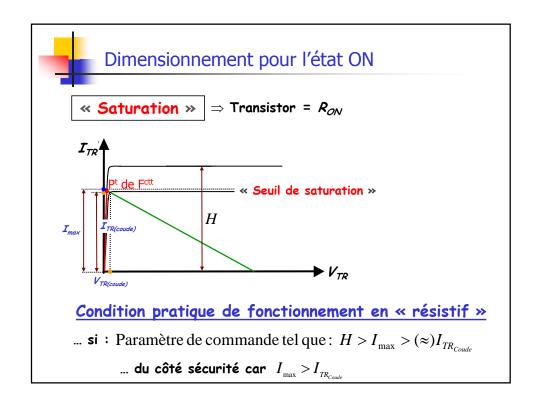


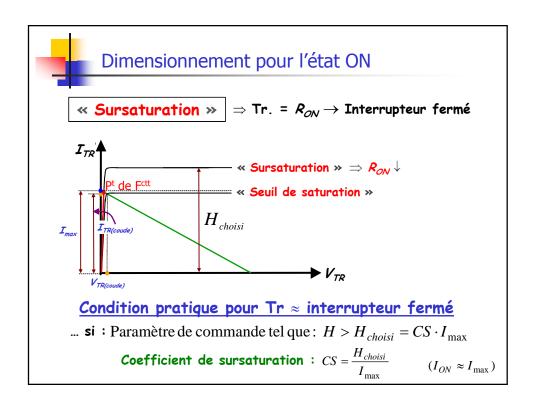


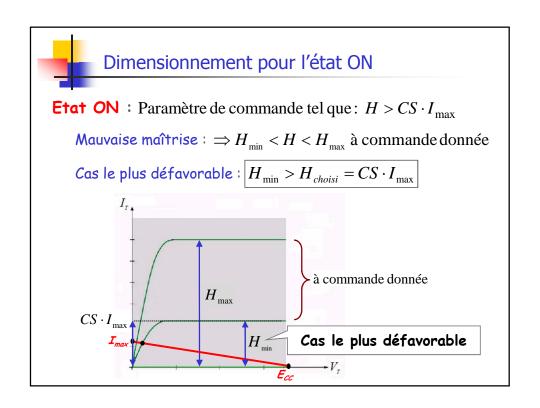


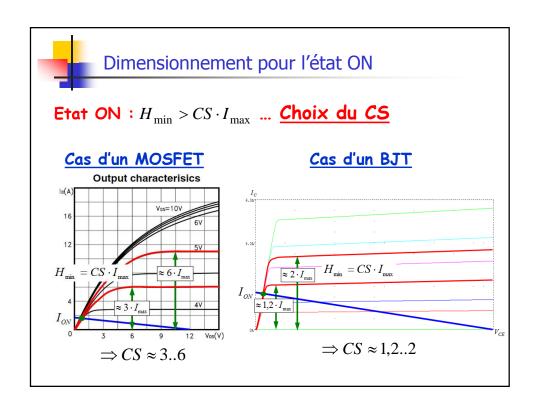

<u>AVANTAGES</u> par rapport à un relais électromécanique :

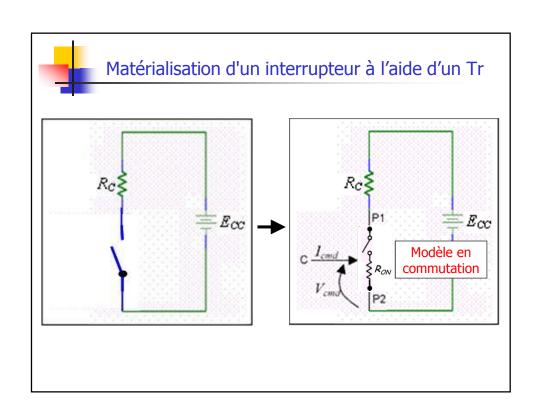

- absence de contact (le transistor est dit « interrupteur statique »)
 - ⇒ bonnes <u>caractéristiques dynamiques</u> (temps de réponse plus court) ⇒ fréquence de fonctionnement très élevée (í MHz í GHz)
 - ⇒ pas de rebonds, bruit et étincelles
 - ⇒ nombre de « manò uvres » possibles plus élevé (<u>durée de vie plus élevée</u>)
- $\bullet \;\; \underline{\text{commande par un signal électrique de faible puissance}}, \, \text{\'i} \;\; .$









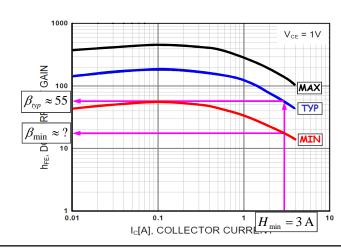


BJT : Dimensionnement du circuit de commande

Etat OFF : $V_{\it BE} < 0.5 \rm V$

Etat ON:
$$H_{\min} > CS \cdot I_{\scriptscriptstyle ON}$$
 avec: $H_{\min} = \beta_{\scriptscriptstyle \min} \cdot I_{\scriptscriptstyle cmd}$

$$\Rightarrow I_{cmd} \ge \frac{CS \cdot I_{ON}}{\beta_{(H = CS \cdot I_{ON})_{min}}}$$


$$I_{cmd} = \frac{V_{cmd} - "0.7 \text{ V"}}{R_B} \quad \Longrightarrow R_B \ \dots$$

BJT: Dimensionnement du circuit de commande

Détermination du gain en courant

graphique $\beta_{typ} = f(I_C)$ permet de connaître β_{typ} au courant $CS.I_{ON}$

BJT: Dimensionnement du circuit de cmde

Détermination du gain en courant

$$\frac{\Delta \beta}{\beta} = \frac{\beta_{typ} - \beta_{min}}{\beta_{typ}} \approx C^{ste} \quad \Rightarrow 1 - \frac{\beta_{min}}{\beta_{typ}} \approx C^{ste} \quad \Rightarrow \frac{\beta_{min}}{\beta_{typ}} \approx C^{ste}$$

$$\frac{\Delta \beta}{\beta} = \frac{\beta_{typ} - \beta_{\min}}{\beta_{typ}} \approx C^{\text{ste}} \implies 1 - \frac{\beta_{\min}}{\beta_{typ}} \approx C^{\text{ste}} \implies \frac{\beta_{\min}}{\beta_{typ}} \approx C^{\text{ste}}$$

$$\Rightarrow \text{Calcul du } \beta_{\min} : \left(\beta_{\min}\right)_{H_{\min}} = \left(\beta_{typ}\right)_{H_{\min}} \cdot \left[\frac{\beta_{\min}}{\beta_{typ}}\right]_{donnés}$$

Electrical Characteristics T _C =25°C unless otherwise noted						
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CES}	Collector Cut-off Current	$V_{CE} = 60V, V_{BE} = 0$ $V_{CE} = 80V, V_{BE} = 0$			100 100	μΑ μΑ
h _{FE}	DC Current Gain	$V_{CE} = 5V, I_{C} = 10mA$ $V_{CF} = 1V, I_{C} = 500mA$	20 40	130 140		
		V _{CE} = 1V, I _C = 2A	25	75		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 2A, I_B = 0.$			25	V
$V_{BE}(on)$	Base-Emitter ON ∀oltage	$\begin{array}{c} _{C} = 2A, _{B} = 0, \\ _{CE} = 5V, _{C} = \\ _{CE} = 1V, _{C} = \end{array} \Rightarrow (\beta_{r})$	_{min}) _{3A}	= 55 ·	$\frac{23}{75} \approx 1$	15

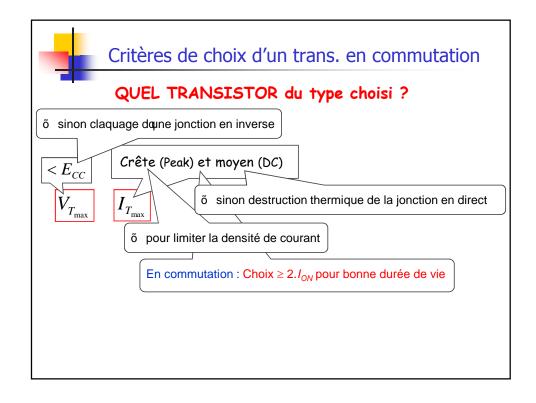
BJT: Dimensionnement du circuit de cmde

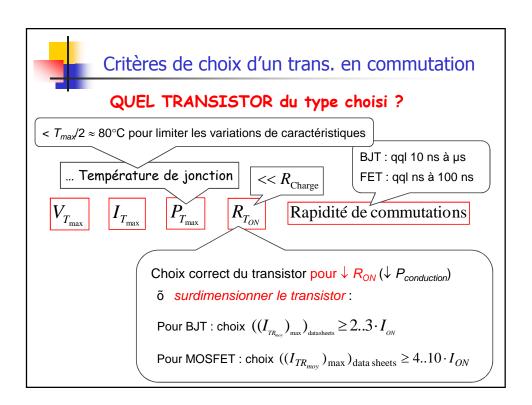
Remarques : déclassement (VCE et température)

$$\label{eq:classement} \text{"Déclassement":} \begin{cases} \bullet \, V_{CE_{ON}} \neq V_{CE(\text{data sheets})} \Rightarrow -1\%/^{\circ} \text{V} \\ \bullet \, \text{température}_{\text{réelle}} \neq \text{température}_{\text{data sheets}} \left(\approx 25^{\circ} \text{C} \right) \Rightarrow 1\%/^{\circ} \text{C} \end{cases}$$

Critères de choix d'un trans. en commutation

BJT OU MOSFET?


MOSFET: plus rapide


BJT: moins cher et plus robuste!

 $BJT: R_{ON}$ plus faible (à même « taille » de transistor)

BJT : I_{cmd} !

MOSFET : V_{GS} imposé par V_{cmd} !

